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1.  Introduction 
Biology thrives on complexity, and yet the approaches to decipher complex biological 
systems have been simple, observational, reductionist and qualitative. The observational 
nature of biology may even seem self-evident, as for instance expressed below more than 
three centuries ago by Robert Hooke, whose work Micrographia of 1665 contained his 
microscopical investigations that included the first identification of biological cells. 

“The truth is, the science of Nature has already been too long 
made only a work of the brain and the fancy. It is now high time 
that it should return to the plainness and soundness of 
observations on material and obvious things.” 

Nowadays, the fundamental “parts” out of which biology is created are observed, inferred 
and listed in multifarious ways.  The results of these observations, inferences and 
cataloging are a marvel to regard as their interconnections, intertwining, and interactions 
appear to use some universal principles that still remain to be deciphered and fully 
understood. In order to unravel this biological complexity, it has become necessary to 
develop novel tools and approaches that augment, and rigorously formalize those human 
reasoning processes, which until now could be used for only tiny toy-like subsystems in 
biology. To this end, various “Computational Systems Biology Tools” aim to draw upon 
constructive mathematical approaches developed in the context of dynamical systems, 
kinetic analysis, computational theory and logic. The resulting toolkits aspire to build 
powerful simulation, analysis and reasoning facilities that can be used by working 
biologists for multiple purposes: in making sense of existing data, in devising new 
experiments and ultimately, in understanding functional properties of genomes, 
proteomes, cells, organs and organisms. If this ambitious program is to ultimately 
succeed, there are certain critical components that require special attention of computer 
scientists and applied mathematicians. 

1) There is a critical need for powerful computational environments, where novice 
users can build prototyping tools quickly. An example of such a tool is the multi-
scripting Valis environment, which provides rapid prototyping facilities in the 
same way as Matlab and Mathematica do for other disciplines. See [15]. 

2) There is a critical need for research and pedagogic modelling tools that allow a 
novice user to understand, reason, and ponder about large, complex and detailed 
biochemical systems effectively, efficiently and yet effortlessly. 

3) Finally, there is a critical need for a catalogue of illustrating examples, where the 
afore-mentioned methodologies prove their power unambiguously.  

Given the infancy of this emerging field, these pioneering experiments will face many 
unpredictable hurdles, but the experience gained will most likely revolutionize the 
current collective scientific viewpoint. Primary among these grand challenges could be 
the one related to various processes involved in cancer: cell cycle regulation, 
angiogenesis, DNA repair, apoptosis, cellular senescence, tissue space modeling 
enzymes, etc. Note that presently there is no clear way to determine if the current body of 
biological facts—in this instance, the ones related to cancer—is sufficient to explain 
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phenomenology. In these particular cases, rigorous mathematical models with automated 
tools for reasoning, simulation, and computation can be of enormous help to uncover 
cognitive flaws, qualitative simplification or overly generalized assumptions. 

2.  Methods, Assumptions, and Procedures 
The research program at NYU aimed to fulfill these critical needs described previously. 
The original development program described in the NYU proposal was quite ambitious, 
but did not foresee its relation to all the complementary work that began to be done 
within the BioCOMP program.   Not surprisingly, the original plan went through a series 
of transformations as it proceeded and acquired new results produced by the laboratory, 
by other BioCOMP program members, and by the biology, bioinformatics, and systems 
biology communities at large. 

The research carried on by the NYU Courant Bioinformatics Group developed along two 
complementary lines sharing many ideas, approaches and concepts, with several sub-
projects supporting them. 

• Recomputation: The first research line concentrated on modeling and analysis of 
biological systems via simulation and “formal methods”. 

• Redescription: The second research line concentrated on the direct analysis of 
measured data (mostly micro-array data).  Statistical approaches and 
representation problems constituted the core of this research line. 

Each research line carried its own set of peculiar methods, assumptions and procedures.  
However, a unifying effort was always pursued during the project development. 

Modeling and Analysis 
One of the key objectives of the NYU Courant Bioinformatics Group has been to provide 
biologists with new tools capable of aiding the formulation of alternative hypotheses, and 
thus, reducing the effective cost of an experiment. Model building and model checking 
tools were considered the most ideal for this goal. 

The modeling of biological systems relies on several techniques developed over the 
years. Deterministic and stochastic methods (e.g., the well known Gillespie’s algorithm) 
have been used for a variety of examples in literature, in conjunction with different 
modeling formalisms and tools.  In particular, hybrid systems [1] have proved well suited 
for the modeling needs of systems biology, as they allow for a combination of discrete 
and continuous semantics, which can be used to model and approximate both regulatory 
and metabolic networks.  Furthermore, the study of hybrid systems required (and still 
requires) answering deep and complex mathematical and algorithmic questions, to 
address issues of scale and efficiency that hamper the direct observation of large 
biological system models. 
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Tools 
In order to complete the research program, the NYU Bioinformatics Group built several 
tools that have been distributed under the DARPA Open Source License and that have 
been – when feasible – integrated into the BioSPICE framework. 

Simpathica is a toolset that addressed the issues at the core of the NYU Bioinformatics 
Group statement of work. Simpathica comprises an Ordinary Differential Equations 
(ODE) based pathway simulator, which is used as the main engine for producing 
different scenarios by varying the model’s parameters.  The simulation engine is based on 
off-the-shelf ODE integrator libraries (Octave LSODE library and Python’s NumPy and 
SciPy libraries), enhanced with features that are proper for a hybrid system simulator. 

Simpathica also comprises a “simulation traces analysis” tool based on a query language 
patterned after a well-known temporal logic.  Given a set of simulation traces, a user can 
formulate a number of “temporal queries” about the behavior of the system.  The 
Simpathica temporal logic analysis back-end (called XSSYS) sorts through which query 
is true and which is not.  This kind of analysis is complementary to the usual charting of 
simulation results, and it has two advantages. First, it can be easily automated, as queries 
and data are all computer readable.  Second, it can find small discrepancies in the data, 
which may escape simple analysis of graphed values, especially in the presence of 
several variables. 

GOALIE is a software system that uses the GO ontology biological process taxonomy to 
explore temporal invariants, directly interpreting numerical data organized along time (or 
concentration, dosage or other independent variable, or combination thereof). The key 
contribution afforded by GOALIE is integrating data-driven reasoning about time course 
datasets (mostly micro-array data) with model-building capabilities through the concept 
of redescription. 

NYUMAD and NYUSIM are two databases that were built to support the data storage 
needs of the NYU Bioinformatics Group and its collaborators. NYUMAD is a database 
for storing micro-array data based on the MAML model definition. NYUSIM is a 
database system for storing simulation data. 

Foundations 
Several inquiries and improvements were also made on the theoretical and foundational 
aspects of hybrid systems analysis.  In conjunction with other researchers in the 
BioCOMP program, the NYU Bioinformatics Group expanded the algorithmic and 
mathematical foundation of hybrid systems analysis tools, by re-casting the key problem, 
namely reachability analysis, in terms of bounded semi-algebraic model checking.  

Experiments and simulations produce traces of observable quantities of various 
biochemical systems at different levels of detail and accuracy (i.e., time-course data.) 
Acquiring and integrating several data sources, e.g., from in vivo, in vitro, and in silico 
(i.e., simulated) experiments, and generating one or more observed traces is thus an 
important activity. The data collected is stashed in various databases and formats. E.g., 
the NYUMAD database stores micro-array data and allows for collaborative efforts 
across geographically distributed laboratories. 
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The data collected along with the models of the biological system being studied—e.g., 
the Caspase cascade system—constitutes the primary elements of our analysis. The 
models may be selected from a variety of sources in an interoperable manner, e.g., 
SBML, BIOCYC, WIT, KEGG, PathDB, etc. 

Once we have the data and a model, our system constructs a representation of the 
“regions of interest” of the parameter space which satisfy a given reachability condition. 
As an example, we could identify for which ranges of parameters the system reaches a 
steady state.  On account of the symbolic algebraic manipulation of the models, we can 
describe concisely and exhaustively such “regions of interest.” Once these regions are 
available for analysis, it will be possible to plan the wet-lab experiments around them. 
While it can be argued that this is not all that different from current practice, our 
symbolic methods provide exhaustiveness, scalability, and correctness when combining 
different models to explore emergent behavior. 

A survey of several pathway models in Systems Biology reveals that a vast majority of 
the equations presented can be recast in a relatively small set of canonical forms. In 
particular, several of basic mathematical models for metabolic, regulatory and signaling 
pathways—Michaelis-Menten, Hill type cooperative equations, Generalized Mass-Action 
models—can be accommodated by casting them into an appropriate hybrid system 
formalism with a few constraints. 

Essentially, the behavior of the system can be modeled as a set of equations which in this 
case could be the model of a metabolic pathway expressed as a set of mass-action 
equations of the (restricted) form 

),...,,;;,...,,(
),...,,;;,...,,(

2121

2121

kk

kk

ppptxxxQ
ppptxxxP

x =&  

with the ‘x’s denoting the system observable variables, t  denoting time, and the ‘p’s 
being the parameters of the model, i.e., a rational function of polynomials P and Q.  
Tarski’s theorem and related decision procedures (e.g. Collins’ cylindrical algebraic 
decomposition (CAD) for quantifier elimination) are therefore applicable, and can be 
used to compute the reachability region of the model representing the biological system. 

This encoding has advantages from the point of view of purely symbolic manipulation of 
the kind carried out while doing paper-and-pencil algebraic manipulation. The reasons 
are twofold. First, the manipulation of rational functions is the most developed one in the 
field of Computer Algebra. Second, while it is true that the algorithms for the 
manipulation of rational functions are very time consuming in the worst case, we note 
that such complexity is dependent on the “exponents” appearing in the polynomials. For 
the case of biochemical processes we are interested in modeling, these exponents are low: 
usually, below 3, and much more rarely 4. This reduced complexity in biological 
examples makes the symbolic manipulation algorithms applicable to much larger systems 
than in the unrestricted case. 

The primary result of this line of inquiry has been the precise characterization of the 
subclass of hybrid system models apt for biological system modeling. Further, 
appropriate approximation schemes have been proposed, that can be manipulated by a 
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program in a semi-automated way, while bounding the inherent computational 
complexity of the approach. (See [2-15] for a detailed exposition) 

Models 
Several biological systems were selected for analysis in consultation with biologist 
collaborators, in order to test the viability of the approaches and the techniques 
developed under the BioCOMP program. 

Caspase cascade models. The NYU Bioinformatics Group and the Lazebnick’s 
laboratory of Cold Spring Harbor Lab have completed several models, consistent with 
predominant hypotheses about how internal-signal based apoptotic processes operate to 
cause cell death. The models of interest are initiated by cytochromes from mitochondria 
in response to DNA damage, and are also involved in creating a holoenzyme to degrade 
DNA and proteins in the cell. The holoenzyme creation process is aided by a Caspase-
cascade, and the details of the process were firmly established by means of the models 
constructed and by the experiments performed, (Figure 1). The results of this analysis 
and its extensions to a similar process initiated by external-signaling have also been the 
subject of a related study on host-pathogen interaction that is described elsewhere in this 
report. 

 

 

Figure 1: The Caspase Cascade pathway and its rendition with Simpathica. 

SEB host-pathogen interaction. The SEB host-pathogen interaction case study was 
analyzed in collaboration with several groups within the BioCOMP program: Walter 
Reed Army Institute of Research, Thomas Jefferson University., and University of 
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California at Los Angeles. The pathogen attacks with Staphylococcal enterotoxin B 
(SEB), a member of a family of exotoxins produced by Staphylococcus aureus.  It is a 
causative agent of toxic shock characterized by acute vasodilatation leading to severe 
hypotension. The SEB host-pathogen interaction case study was the test bed and the main 
motivation used to develop GOALIE. 

Data Analysis and Redescription 
Biological processes are the result of interactions within complex networks. 
Traditionally, biologists constructed “models” to demonstrate their ideas on how a 
particular biological system or subsystem actually works, by relying on their immense 
breadth of knowledge, compounded by depth and expertise on a particular system. Now, 
biologists are also faced with the task of reconstructing models from large data sets, 
where relevant information may be deeply buried in layers of numerical information. 

Current micro-array data analysis techniques draw the biologist’s attention to targeted 
sets of genes e.g., those that vary in a well correlated manner, are under similar 
regulatory control, or that have consistent functional annotation or ontological 
categorizations. Yet, such methods do not present global or dynamic perspectives (e.g., 
invariants) inferred collectively over the dataset. Such perspectives are important in order 
to obtain a process-level understanding of the underlying cellular machinery, especially 
how cells react, respond, and recover from stresses. 

To address these problems, an approach and a system based on the statistical analysis of 
time course micro-array data were developed, by taking into account the annotations that 
have been made of each gene, which are available from the several publicly available 
databases.  The procedural ideas at the core of such an approach are relatively simple, yet 
they have already opened up a number of very interesting mathematical questions 
regarding the overall performance of the setup, and the way its results can be interpreted 
by a biologist, especially in the face of very noisy data and irrelevant pieces of 
information.  The end result is to further annotate an experiment with “invariant 
properties” constructed from the building blocks provided by a controlled vocabulary.  
Expressing such invariants using Temporal Logic (i.e. one of its variants) appears to be 
the most natural step to take. 

To recapitulate, on one side there is a growing number of (time-course) datasets from 
micro-array experiments, while on the other side, there is a growing corpus of gene 
products and protein annotations in terms of controlled vocabularies (or ontologies).  
Several researchers have at this point started to look at the significance of “describing” a 
micro-array dataset with the terms contained in such ontologies, e.g. the Gene Ontology, 
the MeSH or the BioPAX ontology.  In these applications, the question asked is often of 
the form “what is the set of terms that conveys the most information about an 
experiment?”.  This question is usually asked after a “clustering” of the data is performed 
and appropriate statistical inference tests have been applied (e.g. a Fisher Exact Test). 

The approach developed within the BioCOMP program by the NYU Courant 
Bioinformatics Group adds one more dimension to the analysis, by introducing a 
breakdown of the time course experiment (which usually contains from 5 to 50 time 
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points) into “overlapping windows”.  Clustering is performed within each window and 
the biological processes are tracked as they “move” from window to window.  This yields 
valuable information to a biologist about the locality of phenomena, which may be the 
subject of better-targeted – hence cheaper – experiments.  The result is a set of graph 
relationships between windows based on the associations among clusters and terms from 
the controlled vocabulary.  This set of graph-relationships is the basis for the construction 
of temporal logic formulae describing the biological system at a phenomenological level.  
The construction of this graph is straightforward but it strongly depends on the choice of 
controlled vocabulary or ontology, on the quality of the basic annotations available (e.g. 
annotation of a given gene product with a number of terms), and on the quality of the 
statistical tests used to perform the initial association of ontology terms to the clustering 
experiment in each window, (Figure 2). 

 

 
 

Exists_path(`sister chromatid cohesion' 
            Until (`G2 phase' And `G2 specific transcription')) 
Eventually(Exists_path((`G2 phase' And `G2 specific transcription') 
                       Until `G2/M specific transcription')) 

 

Figure 2: A screenshot of GOALIE, a summarized result of the tests run with the Yeast 
Cell Cycle dataset and two TL formulae that can be derived from the information 
internally maintained by GOALIE. 
The GOALIE display is divided in two parts.  The left part contains a list of all the 
clusters that are part of the analysis.  The right part, split into top and bottom views, 
contains information about the relationships among the different clusters. The top view 
shows the “graph” of connections among clusters at different time points; two clusters 
being “connected” if they share some characteristics i.e. GO categorizations.  The 
bottom view shows information about the connection between two clusters: which GO 
categories are maintained, which are present in the first but not in the second, and which 
are present in the second, but not in the first. 
GOALIE has all the pre-processed information available to automatically generate these 
two temporal logic formulae. The first one states that there exists a directed path 
connecting a sequence of clusters in successive time windows such that the GO category 
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`sister chromatid cohesion' holds until the cell enters G2 phase. The second formula 
states, albeit obviously, the following: “the cell, after dwelling in G2 phase, enters M 
phase” Although this is a well known feature of the cell cycle, it is interesting as it 
derives automatically from numerical expression matrices and a static ontological 
annotation 

Finally, the set of graph relationships is organized in a directed acyclic graph (DAG), 
although circularities can be re-introduced by a wrapping technique in order to analyze 
periodic processes, e.g., in studies of the Cell Cycle.  An edge is placed between a cluster 
in a window and another cluster in a previous or successor window.  Each edge is tagged 
with the terms that are shared between the two clusters’ re-descriptions.  Each edge is 
also tagged with the terms that are associated only to the first cluster, and with the terms 
that are associated only to the second cluster.  The set of temporal logic sentences is 
reconstructed by analyzing different “chains” of edges in the DAG.  E.g. finding a set of 
terms that appear in each edge of a chain from the initial window to the last window 
generates a particular temporal logic sentence, denoting the invariance of the set of terms. 

The set of invariants, whose semantics is well defined in terms of an interpretation of the 
DAG as a Kripke Structure, can be rendered using appropriate linguistic interfaces.  A 
biologist reading such a description will be able to discern particular phenomena, which 
may emerge from the analysis of the data, and design future experiments accordingly, 
thus lowering their cost. 

Of course, different ontologies will produce different descriptions of the dataset. Hence 
the question: when are two descriptions comparable?  Assuming that the results of a 
biological experiment cannot have wildly diverging interpretations, two different 
controlled vocabularies should produce “compatible” descriptions.  Deciding that the two 
descriptions are compatible will require the application of several linguistic techniques.  
However, should the descriptions diverge in a significant way; this difference could point 
to an unresolved scientific problem.  For instance, this divergence could point a biologist 
toward the design of a targeted experiment whose aim would be to resolve the conflict.  
The design of the experiment will be dependent on the quality of the description made in 
terms of the different ontologies; thus, the need for appropriate linguistic interfaces.  

Temporal Logic 
A common trait of all the research carried on was the use of one form or another of 
Temporal Logic (TL) as a canonical representation of properties of biological systems.  
The temporal logic chosen was at a time a variation of computation tree logic (CTL) or a 
variation of a linear temporal logic (LTL). 

Temporal logic was used to formulate queries to be tested against simulation traces in 
Simpathica.  Simpathica also contains a Natural Language interface that transforms 
English questions into appropriate TL queries for the trace analysis system. 

Temporal logic formulae can also be generated in a controlled way to produce 
“descriptions” of a set of simulation traces or of a time series of micro-array experiments.  
GOALIE can produce such a set of TL formulae by leveraging the redescribed clusters 



9 

and their inter-relationships.  Once GOALIE has produced the TL formulation, rendering 
it in a simple set of English sentences is a straightforward task. 

3.  Results and Discussion 
The research activities of the NYU Bioinformatics Group led to several results and tools.  
This section is roughly organized into two parts: the first one describing the biological 
systems that were analyzed, while the second part briefly describes the tools that were 
developed during the funding period. 

Host-pathogen interaction SEB 
In collaboration with several other groups within the context of the DARPA BioCOMP 
program, and with Dr. Jett's group at Walter Reed Army Institute of Research in 
particular, the NYU Bioinformatics Group analyzed a host-pathogen interaction dataset.  
The pathogen attacks with Staphylococcal enterotoxin B (SEB), a member of a family of 
exotoxins produced by Staphylococcus aureus.  It is a causative agent of toxic shock 
characterized by acute vasodilatation leading to severe hypotension.  Animal studies have 
shown that 75% of the toxin administered to primates localizes to renal proximal tubule 
epithelial cells (RPTEC), which possess a glycosphingolipid receptor for SEB and 
express apoptotic markers in response to the toxin.  These cells also secrete potent 
vasoconstrictors, endothelins, which play an important role in vascular tone regulation 
[16-19]. A highly collaborative research effort within the DARPA program was aimed to 
reconstruct a model of the pre-apoptosis processes involved in the response to SEB. 

The GOALIE tool was used to analyze the SEB dataset provided by WRAIR Jett's 
Laboratory.  The dataset comprises several time course micro-array measurements of 
gene expression levels under two treatments.  The observations made on a dataset 
prepared from the 50µg treatment set of more than 700 genes are described below. 

The time course data was partitioned in windows of 3 time points, yielding 4 windows.  
Each window was partitioned into 20 clusters giving a total number of 80 clusters.  These 
80 clusters were redescribed at a p-value of 0.05; the redescriptions across windows were 
then computed using a stringent Jaccard's coefficient θ = 0.8. 

The notation: `L:N,' with L and N positive integers, to denote cluster N in time course 
window L is used in the following paragraphs 

Time Course Window 1 to Time Course Window 2: Connection 1:9 to 2:18. By 
inspecting the first cluster in the first window (Cluster 1:9), it can be noted that one of the 
connections to a cluster in the second window (Cluster 2:18) is labeled (among many 
others) by the GO categories “circulation” (GO:0008015), and by the category “negative 
regulation of heart rate” (GO:0045822).  This represents a constant set of biological 
processes shared by this cluster chain, traversing Cluster 3:17 to Cluster 4:13. 

Time Course Window 1 to Time Course Window 2: Connection 1:9 to 2:6. The 
connection between Cluster 1:9 and Cluster 2:6 is interesting because it shows how the 
category “regulation of lymphocyte proliferation” (GO:0050670) becomes activated in 
the next time-window (Cluster 2:6), while the categories “antigen presentation” and 
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“antigen processing” become inactive. This should indicate that some of the genes in the 
clusters start a response to the pathogen in the second time point. 

Time Course Window 2 to Time Course Window 3: Connection 2:6 to 3:3. Following 
the chain downward it can be noted that the lymphocyte proliferation activity is 
maintained, while categories “lymphocyte differentiation” and “B-cell differentiation” 
become active in Cluster 3:3.  This suggests another stage in the response of the cells to 
the pathogen. 

Following the chains downward, other interesting categories that have been maintained 
across the time course are evident. E.g., there is a set of genes involved in the “cell 
adhesion” processes (chain starting at Cluster 1:16, following 2:8, 3:20 and 4:19) which 
may suggest some “mechanical effect” being at play. 

Another interesting set of relationships involves Clusters 3:3 and 3:6 in two different 
chains rooted at 1:9 and 1:2.  The two clusters connect to cluster 4:3 because of two 
separate, yet apparently related groups of categories.  The connection 3:3-4:3 is labeled 
by the inactivation of the “B-cell differentiation”, “lymphocyte differentiation”, and 
“regulation of lymphocyte proliferation” categories.  The connection 3:6-4:3 shows 
instead the inactivation of the “cellular defense response (Sensu Vertebrata)”. These 
inactivations may be related at a deeper level as they are tied completely to sets of Open 
Reading Frames (ORFs) in the two clusters. 

Other Projects 

Multi-frequency Analysis of Various Biological Systems 
The algorithm proposed was designed to analyze data obtained from time-course 
experiments (e.g., transcriptomic or proteomic data) or in silico simulation of biological 
processes. The input to the algorithm consists of trajectories for the dynamic evolution of 
the abundance of various molecules in a biological system, generated at different 
experimental conditions. The goal of the analysis was to determine whether variations in 
the experimental conditions (e.g., initial conditions or duration of stimuli) cause the 
system to evolve globally in a substantially different manner. Different modes of 
operation in the system could be identified and a correspondence between the typical 
experimental conditions and these modes of dynamic behavior could be established. For 
example, this technique was able to detect the differences in the evolution toward the two 
stable states of the Ras–Protein Kinase C–mitogen-activated protein kinase (MAPK) 
bistable pathway activated by EGF stimuli of various strengths. However, the differences 
in dynamic behavior that could be detected were not at all confined to multistable 
systems. 

The simple mathematical observation underlying our approach was that it would be 
possible to choose a small number of vectors in an orthonormal basis, so that all the 
trajectories of the system under consideration are effectively described mostly by the 
coefficients with respect to those vectors. In mathematical terms, the characteristics of 
the set of trajectories of a complex biological system were studied by projecting them 
onto a suitable, low-dimensional vector space. Because any trajectory can be projected 
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onto this ‘‘coefficient space’’ (more formally, the D-Space), it is then possible to project 
a large number of randomly sampled trajectories into points in the D-Space and identify 
the different modes of evolution of the system by inspecting the clusters that these 
projected points form in D-Space. Studying the geometric properties of these projected 
points can lead to the identification of the biological system modes. A more formal 
explanation of such techniques is given in [20]. 

C. elegans Gonad Tract Cells Simulations 
Understanding intercellular signaling mechanism in developmental biology is an 
important task.  In this context, several experiments on the nematode C. elegans were 
conducted in cooperation with colleagues in the NYU Department of Biology, in order to 
test several hypotheses regarding germ line development. The goal was to better 
understand the processes involved in stem cell differentiation and proliferation. No 
animal research was conducted under this project.   

To this end, a rigorous computational model of C. elegans germ line stem cell growth, 
based on real observations of cell division patterns in the distal mitotic zone, provided 
information about the underlying signaling processes. Since the cell division patterns are 
not directly obtainable from live animals, synchronized populations of worms were fixed 
and examined for the presence of actively dividing cells within the distal mitotic zone. A 
large collection of such data was treated as a set with certain probabilistic parameters 
regarding the rate and position of cell division. 

As part of the investigation of different approaches to simulation, a stem cell population 
model was developed, which was tested on a number of available simulation platforms. 
The aim of this study was to evaluate each simulation platform with respect to its ease of 
use and expressivity when dealing with the chosen problem. 

The Stem Cell model is an augmented Birth-Death process. A population of Adult Stem 
Cells is seen differentiating into a set of Committed Progenitors Cells, which then 
differentiate into Specialized Somatic Cells. This model captures the behavior of stem 
cells. A picture of the complex transitions possible for a single Stem Cell follows, (Figure 
3). 
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Figure 3: The stem cell transition model, representing the possible changes that such a cell can undergo. 

The model consists of an approximated set of deterministic Ordinary Differential 
Equations, ODEs, modeling the stochastic transitions of the system. The model has 
several parameters, which are essentially the rates of the exponential processes 
representing each possible transition for a class of cells (apoptosis, differentiation). The 
sizes of the populations of different kinds of stem and somatic cells were logged as a 
result of a simulation run. The model was encoded as (1) a plain set of ODEs and as (2) a 
Discretized Stochastic Finite Automaton, which was then implemented in a number of 
environments: Octave (an ``open source'' non commercial system very similar to 
MatLab), Mathematica, LambdaSHIFT (a Hybrid System simulator from UC Berkeley), 
and Charon (another Hybrid System Simulator from U. Penn), and (3) as a spatially 
distributed population of locally interacting cells. 

The modeling of the Stem Cell Population system eventually evolved into a modular 
approach, where each stage of the differentiation process was distinguished simply by 
different parameters. The resulting model is rather robust, converges to the expected 
steady state, and responds well to perturbations in all the implementations. 
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Figure 4: The 2D Java Cell Population Visualization Tool. 

The initial model was an aggregate one, in the sense that it considered populations of 
cells simply by tracking their sizes. The spatially distributed model reuses the original set 
of equations to define the local rules of interactions among the different cells. A simple 
2D/3D visualization tool that shows the evolution of a population of stem cells was 
developed to facilitate the debugging of the model, (Figure 4). 

Multiple Synthetic Biological Models Classification 
The systematic application of time-frequency analysis and temporal logic based model 
checking led to the formulation of a procedure for the classification of families of 
biochemical pathways and circuits in terms of their temporal behavior. There were two 
immediate pay-offs of this approach. First, a family of models obtained by systematic 
perturbations of an archetypal (e.g., wild-type or ancestral) model, when classified in this 
manner, can help in identifying various incorrect or implausible features of the model. 
Second, specific hypotheses about various features of a given model can be automatically 
generated from such analyses, and then subjected to more exacting experimental 
verification. 

The approach was used (1) to understand the behavior of any individual topologically 
distinct circuit among the set of 125 synthetic biological circuits created out of similar 
elements, and (2) to ascertain the correctness of a well known Yeast Cell Cycle model by 
checking a family of perturbed models created through single and double mutations. The 
resulting tool interacts with a propositional temporal logic model-checking system to 
present qualitative distinctions among the groups within the family of biological circuits 
or among the different multi-modal behaviors of a single pathway. 

The method was tested on the interesting problem posed by the analysis of the series of 
experiments of Leibler and Elowitz [21] and Guet et al. [22], in which the authors design 
and implement in-vivo a family of combinatorial circuits. The long term goal is to solve 
the problem of mapping and reconstructing a mathematically sound and complete model 
to a set of wet-lab observations. In the specific case of Guet et al.’s 125 combinatorial in 
vivo circuits, we want to be able to map the behavior of each of them to a model 
representing one of the standard Boolean gates. 
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The original motivation for designing such a family of synthetic networks by 
combinatorial variations of the network topology was given as follows [22]: “A central 
problem in biology is determining how genes interact as parts of functional networks. 
Creation and analysis of synthetic networks, composed of well-characterized genetic 
elements, provide a framework for theoretical modeling. ... Combinatorial synthesis 
provides an alternative approach for studying biological networks, as well as an efficient 
method for producing diverse phenotypes in-vivo.” Nonetheless, lack of efficient tools for 
modeling and analysis of such synthetic networks has hindered many possible 
applications of these networks.  With appropriate tools, one can foresee applications 
where millions of randomly generated networks could be screened for selection of 
primitive circuits with specific properties (robustness, immunity to noise, etc.), or as 
building blocks of larger circuits with specific temporal properties, or even as scaffold 
structures for measuring kinetic parameters of a component as it operates in vivo. The 
Simpathica/XSSYS system and the ancillary modules NYUSIM and NYU BioWave 
respond to these demands quite well. That is, the combination of Simpathica modules can 
be employed synergistically to analyze the set of Guet et al.’s biological combinatorial 
circuits, by providing a semi-automated way to classify them based on the profiles of 
their behaviors. The classification of behaviors was accomplished by a careful 
application of time-frequency clustering techniques and by a modified model-checking 
approach that directly tests for the truth value of Boolean expressions over traces of the 
system. Following such demonstration, an extension of this approach was developed to 
search for important distinguishing logical characterization, by using a generate-and-test 
procedure for temporal logic formulæ. Such a process, though computationally 
inefficient, automates a discovery system that can further aid a working biologist. The 
approach was also tested against a model of the Yeast Cell Cycle [13,14], for which a 
preliminary group of three datasets had been produced [23]. 

Tools and Systems 

Simpathica/XSSYS 
The Simpathica/XSSYS system is a novel Pathway Simulation and Trace Query tool. The 
system eventually manipulates traces, which can be the product of wet-lab experiments 
or computer simulations. 

Wet-lab experiments are extremely costly. Running simulated experiments before setting 
up a complex wet-lab experiment may guide the researcher toward a solution (verifying a 
hypothesis) in a quicker and more cost-effective way. 

No matter what the source of data is, for most biological systems the number of variables 
involved is very high.  It then becomes very difficult to concisely formulate queries about 
the system behavior. 

The Simpathica/XSSYS system allows a user to construct a model of a set of pathways in 
the spirit of what was proposed by Voit et al. The set of pathways is translated into an 
XML format, which encodes a set of relations among products and enzymes and gives 
rise to a set of Differential Algebraic Equations (DAE, S-System, cfr. Voit [24]) with 
special constraints. 
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The set of DAE is simulated using Octave and the result is stored in an intermediate 
format suitable for the trace analysis subsystem. The resulting trace is eventually stored 
in a Database system, (Figure 5). 

Given the trace of a system, i.e. a time-indexed sequence of state vectors representing a 
solution of the DAE system, Simpathica can perform the following operations. 

Simpathica extracts a collapsed timed automaton from the trace by grouping the state 
vectors according to several criteria. The most important criterion is the detection of 
significant changes in the vector field underlying the DAE numerical solution. An 
equivalence relation based on a bisimulation analysis over the collapsed states is also 
built, in order to be able to detect cycles in the collapsed automaton (essentially 
achievable with a normalization operation). 

The definition of a query language (Simulation Runs Query Language, SQRL) based on a 
Temporal Logic formalism was developed in which to formulate queries like 

eventually(not always(LacI < 1.3) or always(LacI > 4.0)). 
The above example query expresses the fact that the value of the `LacI' variable oscillates 
between the two values of 1.3 and 4.0. The system being analyzed is the `repressilator' 
system by Elowitz and Leibler [21]. The analysis tool provides counter examples of when 
a query such as this is not true and describes under which altered conditions it could be 
true.  

The approach is based on the observation that the traces being analyzed do not 
necessarily represent all possible behaviors of the metabolic and regulatory system (i.e. 
of the set of DAEs) under scrutiny. This is a key observation that allows us to tailor the 
algorithms for much more efficient execution than in the case of general analysis and 
verification tools.  
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Figure 5 The Simpathica/XSSYS data flow schema. 

 Moreover, while the analysis of a single trace roughly corresponds to the analysis of a 
Linear Time Temporal Logic system, Branching Time TL can be used to cross analyze 
several traces of a system. Thus Simpathica achieved a nice balance between 
expressiveness and efficiency for the task of comparing several traces in order to 
formulate, validate and/or discard several hypotheses at a time. 

The system contains a Natural Language Interrogation subsystem that allows a biologist 
to formulate the temporal logic queries in (restricted) English. 

GOALIE 
GOALIE is a software system that uses the GO ontology biological process taxonomy (or 
any other ontology or controlled vocabulary collection – e.g. MeSH, UMLS, etc.) to 
automatically extract temporal invariants from numerical data organized along time (or 
concentration, dosage or other independent variable or combination thereof). The key 
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contribution afforded by GOALIE is integrating data-driven reasoning about time course 
data-sets with model-building capabilities through the concept of redescription [25]. 

A redescription is a shift-of-vocabulary, or a different way of communicating a given 
aspect of information. Redescription mining is a technique to find sets (here, of genes) 
that afford multiple definitions. The inputs to redescription mining are the universal set of 
open reading frames (ORFs) in a given organism, and various subsets (called descriptors) 
defined over this universal set. These subsets could be based either on prior biological 
knowledge or defined by the outputs of algorithms operating on gene expression data. 
Example descriptors can be: ‘genes localized in cellular compartment nucleus’, and 
‘genes involved in glucose biosynthesis.’ The goal of redescription mining is to connect 
these diverse vocabularies, by relating set-theoretic constructs formed over the 
descriptors. 

In the first step of the implemented method, GOALIE analyzes a time-course micro-array 
experiment by weighing time-points with a sliding-window (in the simplest case using a 
Haar square weight function, or, in a more interesting case a smoother function, e.g. a 
Gaussian).  The approach has its roots in previous work done by the NYU Courant 
Bioinformatics Group on multi-frequency analysis of signals.  The result of this first step 
(which can be carried out in several ways) is a set of (overlapping) windows. 

In a second step, GOALIE leverages the growing body of controlled vocabulary 
(ontological) annotations for genes and proteins by constructing redescriptions of each 
cluster in each window.  Each cluster in each “window” will eventually get associated 
with a number of “terms” from the controlled vocabulary (e.g. from the GO process 
taxonomy).  This association is done by performing different data-dependent statistical 
tests: simple implication covering based on Jaccard similarity, Hypergeometric test, 
Fischer Exact Test, along with appropriate statistical corrections like Bonferroni and 
Benjamini-Hochberg, to reduce the false discovery rate of inferred re-descriptions.  This 
construction for a fixed set of clusters has also been explored previously, but in GOALIE 
this idea is coupled with the time-course analysis of numerical measurements, thus 
bringing to bear the correlation among processes happening within a biological system.  
The approach just described is completely novel. 

In the third step, GOALIE creates a set of graph relationships between windows based on 
the associations among clusters and terms from the controlled vocabulary.  This set of 
graph-relationships is the basis for the construction of temporal logic formulae describing 
the biological system at a phenomenological level (see below: the fifth step).  The 
construction of this graph is straightforward but it strongly depends on the choice of 
controlled vocabulary or ontology, on the quality of the basic annotations available (e.g., 
annotation of a given gene product with a number of terms), and on the quality of the 
statistical tests used in the previous step. 

Finally, in the fourth step, the set of graph relationships is organized in a directed acyclic 
graph (although circularities can be re-introduced by a wrapping technique).  An edge is 
placed between a cluster in a window and another cluster in a previous or successor 
window.  Each edge is tagged with the terms that are shared between the two clusters re-
descriptions.  Each edge is also tagged with the terms that are associated only to the first 
cluster, and with the terms that are associated only to the second cluster.  The set of 
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temporal logic sentences is reconstructed by analyzing different “chains” of edges in the 
DAG.  For example, finding a set of terms that appear in each edge of a chain from the 
initial window to the last window generates a particular temporal logic sentence, 
denoting the invariance of the set of terms. 

GOALIE has been described in [26, 27] 

NYUMAD/NYUSIM 
NYUMAD is a database for storing micro-array data based on the MAML model 
definition [28]. NYUSIM is a database system for storing simulation data. The core 
system underneath both NYUMAD and NYUSIM is organized in a three-tier architecture 
ensuring scalability. A Postgreql relational database management system forms the back-
end tier. The middle application tier comprises Java servlets and supporting modules that 
respond to client requests and interact with the database. The front-end is a Java 
application that provides an easy and intuitive GUI (graphical user interface).  The GUI 
communicates with the server side using an XML data exchange format over HTTP. The 
architecture is illustrated in Figure 6. 

 

 
Figure 6 NYUMAD/NYUSIM three tier architecture. 

 
 
The system is accessible to anyone with an Internet connection. See 
http://bioinformatics.cat.nyu.edu/nyumad for information on how to download and use 
the client GUI application. Users with IDs and passwords can save, edit and retrieve 

XML data stream
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private data. Other users can log on as a ‘guest’ and view and retrieve public data. The 
‘login’ screen is shown in the Figure 7.  

 

 
Figure 7 The NYUSIM client login window. 

 
The system allows controlled access to data so that only users with the correct 
authorization can view private data. Each dataset has an ownership that determines its 
visibility. Collaborating groups can allow shared visibility of the data between their 
groups. After publication, data can be made publicly available with a simple command. 
Public data can be viewed by all users, including guest users. 

The system stores a set of simulation trace data as a matrix, each column representing a 
simulated variable and each row representing a time point. Simulation data sets 
(matrices) are grouped under an experiment. Users create experiments, and for each 
experiment they can generate and store several sets of simulation data. Figure 8 shows a 
view of one such data set. 
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Figure 8 A screenshot of the NYUSIM interface. The main window shows a time course dataset obtained by running 
the Simpathica simulation front end. 

 
The GUI makes the importing of new data easy. New data sets are imported into the 
system by cutting and pasting into an importing area or by loading from a file. After 
importing data, synthetic data sets can be created by combining columns from different 
but compatible matrices. Data can be exported to the system clipboard from all the 
screens where matrix data is loaded or viewed, providing very flexible and efficient data 
retrieval for further analysis. There is a custom ‘Export’ screen where any combination of 
compatible columns can be exported. 

The security model of the system controls visibility and read/write access to the data. 
Each user belongs to a primary group that gives them read access to all the data 
belonging to members of that group. An administrator tool is used to set and edit a user’s 
write access and additional access rights to data from other groups. 

For viewing data, users have the flexibility to restrict data query to data categories of 
interest. This will be a useful feature as the number of experiments and data sets 
increases. Different query and response panels can be seen in Figure 8 and Figure 9. 
There are four major data categories: 

1. Public Data – visible to all users including ‘guest’ users 

2. User Data – the user’s private data, visible only to other members of the same 
group 
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3. Group Data – data from other members in the same group as the user 

4. Other Group Data – data from other groups giving the user access rights 

Collaborating groups sharing data will see the data from other groups under the ‘Other 
Group Data’ category. In the tree view of the data hierarchy, the different data categories 
are color-coded for easy identification. In addition, the data query can be restricted to 
experiments with names matching a given pattern. 

In addition to basic simulation data, it is possible to store associated data such as 
experimental factors and parameters as well as free format descriptive text for each 
experiment or data set. If there are common sets of factor and parameter data, a template 
of such factors can be created for easy input. Figure 9 shows a data set with two factors 
and a very brief synopsis. 
 
 

 
Figure 9 NYUMAD/NYUSIM interface used to add experimental factors and other information to a given dataset. 
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4.  Conclusions 
In conclusion, we note that while the application of the systems approach to biology is 
relatively new, we have made significant strides rather quickly by crosscutting with many 
important tools and techniques from control theory and computer science: discrete and 
hybrid automata, non-linear system analysis, Kripke models, temporal logic model 
checking, modeling databases, languages and environments, etc. The NYU 
Bioinformatics Group, in collaboration with all other research groups in the DARPA 
BioCOMP program, has made many significant contributions in each of these areas 
through techniques, theories and tools. We believe these results will form the foundations 
for the new science of Systems Biology. 
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